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Foundations of a New Test Theory

Abstract

It is only a slight exaggeration to describe the test theory

that dominates educational measurement today as the application of

twentieth century statistics to nineteenth century psychology.

Sophisticated estimation procedures, new technicp,es for missing-

data problems, and theoretical advances into lal:ent-variable

modeling have appeared--all applied with psycholnical models that

explain problem-solving ability in termo of a stagle, continuous

variable. This caricature suffices for many p,...actical prediction

and selection problems because it expresses patterns in data that

are pertinent to the decisions that must 1 made. It falls short

for placement and instruction problems based on students' internal

representations of systems, problem-solving strategies, or

reconfigurations of knowledge as they learn. Such applications

demand different caricatures of ability--more realistic ones that

can express patterns suggested by recent developments in cognitive

and educational psychology. The application of modern statistical

methods with modern psychological models constitutes the

foundation of a new test theory.

Key Words: Cognitive psychology
Educational measurement
Item response theory
Psychometrics
Test theory



Introduction

Educational measurement faces a crisis today that would

appear to threaten its very foundations. The essential problem is

that the view of human abilities implicit in str 4ard test

theory--item response theory as well as classical true-score

theory--is incompatible with the view rapidly emerging from

cognitive and educational psychology. Learners increase their

competence not by simply accumulating new facts and skills, but by

reconfiguring their knowledge structures, by automating procedures

and chunking information to reduce memory loads, and by developing

strategies and models that tell them when and how facts and skills

are relevant. The types of observations and the patterns in data

that reflect the ways that students think, perform, and learn

cannot be accommodated by traditional models and methods. To some

it would seem to some that psychometrics has little to offer in

the quest to apply this new knowledge to the practical educational

problems of the individual, the classroom, or the nation (Hunt and

MacLeod, 1978).

I concur that the standard methods of test theory do not

suffice for solving problems cast in the framework of what we are

learning about how people acquire knowledge and competence, but I

cannot. agree that psychometrics has nothing to offer.

Standard test theory evolved as the application of

statistical theory with a simple model of ability that suits the

decision-making environment of most mass educational systems.

Broader educational options, based on insights into the nature of

learning and supported by more powerful technologies, demand a

broader range of models of capabilities--still simple compared to

the realities of cognition, but capturing patterns that inform a

broader range of alternatives. A new test theory can be brought

about by applying to well-chosen cognitive models the same general

principles of statistical inference that led to standard test

theory vic.en applied to the simple model.

1



The first half of this paper sketches the evolution of

standard test theory, highlighting the challenges that spurred

each new advance. The challenges that cognitive and educational

psychology present today are then discussed, and a framework for

responding to that challenge is outlined. Directions for needed

development are exemplified with current work.

The Early Context of Educational Decisions

The kinds of decisions that shaped the evolution of classical

test theory were nearly universal in education at the beginning of

this century, and dominate practice yet today. They were born of

the constraints educators encountered as they launched their

campaign to provide education on a broader scale than had ever

been attempted hitherto:

"...the demand for tests arose during the period when

school attendance was made compulsory and when higher

education was developing its strengths. Educators faced

the unprecedented dilemma of dealing with the range and

diversity of abilities and backgrounds that individuals

bring to schooling. They needed ways of determining

which children and youths would be able to profit from

some form of instruction as given in ordinary school and

college practices as designed essentially for the

majority of the population." (Glaser, 1981, p. 924).

Educators were confronted with selection or placement decisions

for large numbers of students. Resources limited the information

they could gather about each student, constrained the number of

options they could offer, and precluded tailoring programs to

individual students once a decision was made.

A first example is selecting applicants into a college that

presents the same material in the same way to all students. There

is only one treatment, and the alternatives are to accept or

reject. The admissions officer would prefer to accept those who

are likely to succeed. When resources permit more than one

decision option, the usual generalization of the accept/reject

paradigm is to offer a sequence of alternatives, each more

demanding than the next. Placing high school freshmen into

2



academic tracks is an example of this latter type. Problems of

selection into a single program and of placement into a single

sequence are both decisions about "linearly ordered options."

Exposing a diverse group of students to a uniform educational

treatment typically produces a distribution of outcomes (Bloom,

1976). An individual's degree of

her unique skills, knowledge, and

equally multifaceted requirements

At costs substantially lower

performance samples, responses to

provide information about certain

success depends on how his or

interests match up with the

of the treatment.

than personal interviews or

multiple-choice test items

aspects of this matchup. What

is necessary is that each item tap some of the skills required for

success. Even though a single item might require only a few of

the relevant skills and offer little information in its own right,

a tendency to provide correct answers over a large number of items

supports some degree of prediction of success (Green, 1978). If

all candidates are administered the same items, and one wishes to

predict success in linearly-ordered options, their number-correct

scores can be used (Dawes and Corrigan, 1974). Even though the

several students at a given score level possess different

constellations of skills, abilities, and backgrounds, making the

same decision for all of them gmong the available alternatives is

often about as well as can be done with the available data.

Once the test and the linearly-ordered options are specified,

making decisions from test performances requires nothing more

complicated than adding up numbers of correct responses. Two

different tests constructed for the same decision, however,

invariably line up examinees differently as they draw upon

different particular skills from the myriad of those potentially

informative. Additional statistical machimry is required to

guide one in constructing tests and evaluating their quality.

Classical test theory was a first response to these needs.



Classical Test Theory

Charles Spearman (1904a, 1904b, 1907, 1910, 1913) is credited

with the central idea of classical test theory (CTT): a test score

can be viewed as the sum of two components, a "true" score and a

random "error" term. Two similar ("parallel") tests are

considered to reflect the same true score, but disagree about an

examinee's observed scores because of the error components--the

variance of which can, under the assumptions of CTT, be driven to

zero by just making the tests long enough. Ideally decisions

would be based on true scores; in practice they must be based on

observed scores. "Reliability," the degree to which the

unobservable true scores account for the variance in observed

scores, gauges the accuracy with which a test lines up a group of

examinees--a reasonable criterion for the quality of a test if it

is assumed that the items tap appropriate skills and scores will

be used to decide among linearly ordered options.

Upon these notions was founded a practicable testing

methodology. Reliability became a paramount measure of the

quality of a test, although of course reliability had to be

complementoxi with validity measures such as the correlation

between test scores and subsequent performance. Validity studies

had less influence on test construction, however, because they

arrive too late in the process--only after the test has been

administered and examinees have been followed over time. To

obtain high reliability, one uses items that would be answered

correctly by about half the examinees, for example, and avoids

items that would have low correlations with the total test scores.

Note that these dicta could guide test construction solely

from counts and patterns of right and wrong responses to candidate

test items--ignoring both the content of the items and the

contemplated decision alternatives. Of course good test

construction does consider the knowledge, skill, and strategy

requirements of items. The point is that these considerations lie

outside the realm of the classical test theory. Test developers

4



use them independently of, sometimes in contradiction to, what

test theory tells them.

Building upon Spearman's foundatica, psychometricians

developed a vast armamentarium of techniques for building and

using tests (Gulliksen, 1950), such as approximating reliability

from the internal ..tonsistency of items within a test (Kuder and

Richardson, 1937) and estimating validity without knowing

subsequent performances of rejected examinees (Kelley, 1923).

Over time, a rigorous axiomatic foundation was laid for

statistical inference under the aegis of CTT (Lord, 1959; Novick,

1966; Lord and Novick, 1968). The simple partitioning of observed

scores into true and error components was generalized to multiple

sources of variation from items, persons, and observational

settings, and the full power of analysis of variance was brought

to bear upon decision-making problems using test scores (Cronbach,

Gleser, Nanda, and Rajaratnam, 1972; Lord and Novick, 1968).

A source of dissatisfaction with CTT early on was that its

characterizations of examinees, such as total score and percentile

rank, and of items, such as percent-correct and item-test

correlation, are confounded descriptions of the particular items

that constitute a test and a particular group of examinees who

takes it (Wright, 1968). If one test consists of easier items

than a second otherwise similar test, examinees' scores on the two

tests are not directly comparable and score distributions have

different shapes. If a test is administered to groups of

examinees that differ in proficiency, item percents-correct and

item-test correlations differ. When many tests could be

constructed for the same purpose, differing perhaps in difficulty

or length, should not there be a way to characterize examinees

independently of the test they took, and items independently of

the examinees who took them?

In attitude measurement,
where agreements to a topic are

analogous to correct answers to test questions, L.L. Thurstone

(1928) expressed the following desideratum: "If a scale is to be

regarded as valid, the scale values of the statements should not



be affected by the opinions of the people [whose responses] help

to construct it." Thurstone (1925) and E.L. Thorndike (Thorndike

et al., 1926) pioneered efforts to relate test scores to

psychological traits, using item percents-correct and assumptions

about distributions of traits to transform scores from different

tests onto the same scale.

Thurstone and Thorndike scaling, despite allusions to an

underlying trait, remained essentially theories for scores, albeit

transformed (with the aid of untestable assumptions) to permit

comparisons across nonparallel tests. Psychological traits per se

appear as explicit parameters in the models of Ferguson (1942),

Lawley (1943), and Tucker (1946). These researchers studied test

construction problems within CTT by making an assumption beyond

those of CTT proper; namely, that aside from random factors, item

responses were driven by a unobservable ability variable. A

second generation of test theory began to take form as attention

shifted from test scores as the object of inference, to

unobservable variables hypothesized to have produced them.

Item Response Theory

Item response theory (IRT), or, "latent trait theory," as it

was called then, appears as a test theory in its own right in the

work of Frederic Lord (1952) and Georg Rasch (1960). Like

classical test theory, IRT concerns examinees' overall proficiency

in a domain of tasks. But while CTT makes no statement about the

mechanisms that give rise to Performance, IRT posits a single,

unobservable, proficiency variable.
1

At the heart of IRT is a mathematical model for the

probability that a given person will respond correctly to a given

1 If classical test theory offers a statistical model for

test scores without a psychological model, Guttman's (1944)

scaling techniques offer a psychological model without a

statistical model. Important in the reconceptualization of the

meaning of test scores, a Guttman scale can be viewed as the

limiting case in IRT in which each item is perfectly informative

about whether an examinee's ability lies above or below a specific

point on an ability continuum.

1 6



item, a function of that person's proficiency parameter and one or

more parameters for the item. The item's parameters express

properties such as difficulty or sensitivity to proficiency. The

item response, rather than the test score, is the fundamental unit

of observation. If an IRT model holds, responses to any subset of

items support inferences on the same scale of measurement.

This conceptualization opens the door to solving many

practical testing problems that were difficult under CTT, such as:

Test construction (Birnbaum, 1968; Theunissen, 1985). If

item parameters are available for a collection of items, tests can

be constructed for optimal performance in specific applications,

such as minimizing classification errors.

Adaptive testing (Lord, 1980, Chapter 10; Weiss, 1984). An

adaptive testing scheme selects the best item to administer next

to an examinee, based on the amount of information that various

available items would provide and a provisional estimate of the

examinee's proficiency from responses to items given thus far.

Educational assessment (Bock, Mislevy, and Woodson, 1982;

Choppin, 1976; Messick, Beaton, and Lord, 1983). Assessments

gauge proficiencies at the level of populations rather than

individuals, to evaluate programs and monitor trends. IRT makes

it possible to establish a stable measurement scale while allowing

assessment instruments to evolve over time.

This work assumed, for the most part, that the IRT model was

known and correct, and that true values or accurate estimates of

item parameters were available. Current IRT research emphasizes

integrating IRT into the general framework of statistical

inference, and acquiring an understanding of just when and how IRT

models are appropriate.

Statistical Inference in Item Response Theory

Early applications of IRT were designed more to demonstrate

its potential than to solve actual measurement problems. Data

were gathered with tests written according to CTT dicta; the same

long tests were administered to many examinees, and each item had
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passed CTT quality checks. Illustrative purposes were served

adequately by rough estimation procedures that treat point

estimates of examinee- and item-parameters as if they were the

parameters themselves, ignoring the uncertainty associated with

the estimates. These approximations break down when IRT is

applied beyond the usual limits of CTT testing, as when examinees

are presented only, say, fifteen items in adaptive testing or five

in educational assessments (Mislevy, 1988). In response, IRT

researchers have turned to two active lines of research in

statistics: missing data methods and Bayesian estimation.

Missing data methods are relevant because a latent variable

such as an IRT examinee proficiency parameter can be viewed as a

datum whose value is missing for everyone. General results on

estimating parameters when some data are missing, such as

Dempster, Laird, and Rubin's (1977) EM algorithm, have led to

methods of item parameter estimation that are at once rigorous and

efficient (e.g., Bock and Aitkin, 1980; Tsutakawa, 1984). Results

on statistical information in missing data problems yield insights

into the uncertainty structures of IRT parameters (Mislevy and

Sheehan, in press; Mislevy and Wu, 1988) and offer ways of

increasing accuracy by exploiting collateral information about

items and examinees (Mislevy, 1987, 1988a).

The Bayesian perspective confronts uncertainty head on,

expressing what is known about parameters as probability

distributions. When these distributions are concentrated, the

expedient of using point estimates as if they were the true

parameters can give acceptable results in subsequent analyses.

But when the distributions are diffuse, one must propagate the

uncertainty into subsequent analyses to obtain correct inferences.

Statistical reasoning along these lines was proposed as far back

as 1927 by Kelley (1927), and championed by Novick in the 1970's

(e.g., Novick and Jackson, 1974), but only now are the ideas

gaining currency. In this framework, one can determine when the

standard, simpler, approximations suffice, but use (admittedly

more complex) correct analyses when they don't. For examples in

8
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IRT estimation problems, see Bock and Aitkin (1981) on item

parameters, Mislevy (1988b) on proficiency distributions, and

Tsutakawa and Soltys (1988) on individuals' proficiencies.

The Question of Model Fit

But of course the IRT model is never exactly correct. A

single variable that accounts for all nonrandomness in examinees'

responses is not a serious representation of cognition, but a

caricature that can solve applied problems when it captures the

patterns that are salient to the job. The pattern that CTT and

IRT can capture is examinees' tendencies to give correct

responses, which can usefully inform decisions about linearly

ordered alternatives. IRT was a practical advance beyond CTT

because it provides information about overall proficiencies in

more flexible ways. It was a conceptual advance because it

provides a framework for detecting anomalies in the "overall

proficiency" paradigm.

This can be illustrated with Rasch's (1960) model for

right/wrong items, supposing for convenience all examinees are

presented the same test. Under CTT, all examinees with a given

total score would be treated alike. Under the Rasch model, all

examinees with the same score would receive the same ability

estimate
2

,
and might also be treated alike--depending on an

analysis of model fit. Combining an examinee's proficiency

estimate with an item's difficulty estimate, the Rasch model

states how likely a correct response would be If the single-

proficiency conception of ability were true. The items that high

scorers missed should usually be easy ones, and the items low

scorers got right should be easy ones. Finding that these

2 Under other IRT models such as the 2- and 3-parameter

logistic models, examinees with the same total score need not

receive exactly the same ability estimate, but usually receive

similar estimates. Correlations between total scores and IRT

estimates in typical educational tests are usually above .95, and

few decisions would be made differently with any IRT model, or, if

everyone has taken the same test, even with CTT.



patterns hold supports making the same decisions about people with

same scores, because, to an approximation, they got the same

items right and the same ones wrong. Total scores, and thus Rasch

ability estimates, convey nearly everything these data have to say

about comparing these examinees.

To the extent that high scoring examinees miss items that are

generally easy and low scoring examinees get hard ones right,

neither total scores nor IRT ability estimates may be capturing

all the systematic information in the data. Analyses of an

individual's unexpected responses can reveal misconceptions or

atypical. patterns of learning (Mead, 1976; Smith, 1986; Tatsuoka,

1983). To understand these patterns one must look beyond the

simple universe of the IRT model--to the content of the items, the

structure of the learning area, the pedagogy of the discipline,

and the psychology of the problem solving tasks the items demand.

Now, patterns in responses other than overall level

proficiency can have educational and psychological meaning, but

yet hold no salience for a particular decision. If overall

proficiency in a domain of items suffices for a particular

decision, as can be the case with linearly ordered educational

options, cross-current patterns constitute data variation that

need not be explicated. This is the essence of statistical

modeling: expressing the patterns that are dominant and meaningful

in terms of model parameters, and allowing for departures from

these patterns in terms of distributions of residuals. But if the

decision does depend on the cross-current patterns, in addition to

or instead of overall proficiency, neither CTT nor standard IRT

may be the right tool for the job.

The issue of model fit, then, is more pragmatic than

statistical, since lack of fit must be judged in practice by the

nature and the magnitude of the errors it causes. An IRT model

might be satisfactory for selecting honors math students, for

example, if people with similar scores have similar chances of

success--even though examinees with similar scores have different

profiles of skills and knowledge. The profile differences could

10



be modeled as "noise" without harm for the selection decision--but

probably not for advising individual examinees which topics to

study to maximally increase their scores.

Measuring learning is one application where IRT models can

fail, because they accommodate only a highly constrained type of

change: an examinee's chances of success on all items must

increase or decrease by exactly the same amount (in an appropriate

metric). A single IRT model applied to pretest and posttest data

cannot reveal how different students learn different topics to

different degrees--patterns that could be at the crux of an

instructional decision.

Testing and Learning

Good "macro-level" decisions to place students into

appropriate educational programs are important in increasing the

quality of education, but they are not sufficient. Tracking

students as they progress opens the door to finer grained "micro-

level" decisions to enhance learning along the way. Good

decision-making at this level requires an inferential framework

built around an understanding of how students learn.

A picture of a learner that is consistent with standard test

theory is that of a collector of facts and skills, adding each to

his repertoire more or less independently of others. Recent

developments in psychology sketch a markedly different picture,

reflecting the astounding capabilities and the surprising

limitations of the mind--lightning fast recognition of stored

patterns and creative applications of heuristic strategies, on the

one hand; yet with short term memory capacities of only about

seven elements and an inability to perform more than one

attention-demanding task at a time. Performance is to be

understood through the availability of well-practiced procedures

that no longer demand high levels of attention ("automaticity");

strategies by which actions are selected, monitored, and, when

necessary, switched ("metacognitive skills"); and the mental

structures that relate facts and skills ("schema"). earning is

11
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to be understood through the automatization of procedures; the

acquisition and enhancement of metacognitive skills; and the

construction, revision, and replacement of schema.

Comparing the performances of novices and experts offers

insights into the nature of performance and learning. A first,

unsurprising, difference is that experts command more facts and

concepts than novices, and have richer interconnections among

them. Interconnections overcome limitations of short term memory;

while the novice may work with seven distinct elements, the expert

works with seven constellations that embody relationships among

many elements ("chunking"). Moreover, experts often organize

their knowledge in schemata possessing not simply more

connections, but qualitatively different ones. The advanced

concepts that college physics students acquire, for example, can

be organized around informal associations or naive misconceptions

(Caramazza, McCloskey, and Green, 1981). These novices tackle

physics problems in less effective ways than expert physicists,

whose more appropriate schemata lead them to the crux of the

matter (Chi, Feltovich, and Glaser, 1981). Experts also differ

from novices by having automatized, through study and practice,

procedures that were once slow and attention consuming, allowing

them to focus on novel aspects of a problem, look from different

perspectives, and more efficiently monitor and guide their efforts

as they work (Lesgold and Perfetti, 1978).

The challenge to education is to discover what experiences

help a learner with a given configuration of propositions, skills,

and connections to xgconfigure that knowledge into a more powerful

arrangement. Vosniadou and Brewer (1987) point to Socratic

dialogue and analogy as mechanisms that facilitate such learning

To apply them effectively, one must take into account not simply

target configurations, such as the expert's model, but the

individual learners' current configurations. The challenge to

test theory is to provide models and methods to assess knowledge,

and to guide instruction, as seen in this new light.



To what extent can standard test theory meet this challenge?

Recall that standard test theory characterizes performance only as

to overall level of proficiency, and learning only as to change in

overall proficiency. Cronbach and Furby (1970) note the

inadequacy of such measures of change when applied with

conventional broad range educational tests:

Even when [test scores] X and Y are determined by the

same operation [e.g., scores under the same CTT or IRT

model], they often do not represent the same
psychological processes (Lord, 1958). At different

stages of practice or development different processes

contribute to performance of a task. Nor is this merely

a matter of increased complexity; some processes drop

out, some remain but contribute nothing to individual

differences within an age group, some are replaced by

qualitatively different processes. (p. 76).

Standard test scores can be connected more closely with

cognition if they summarize performance over only tasks that are

very homogeneous in their requirements (Glaser, 1963), and this

specificity marked the criterion referenced testing movement of

the 1960's and 1970's. Merely defining testing areas very

narrowly, however, is not sufficient to make test scores

instructionally relevant (Glaser, 1981). A list of scores in

narrowly defined areas ignores the interconnections among scores

induced by the knowledge, skills, and strategies they tap in

pairs, in triples, or in hierarchies of the specific behaviors--

yet it is at just this level that instructional relevance must be

sought.

New Tests, New Test Theory

A learner's state of competence at a given point in time is a

complex constellation of facts and concepts, and the networks that

interconnect them; of automatized procedures and conscious

heuristics, and their relationships to knowledge patterns that

signal their relevance; of perspectives and strategies, and the

management capabilities by which the learner focuses his efforts.

13



There is no hope of providing a complete description of such

a state. Neither is there a need to. The new pedazogy need

merely(!) identify communalities among states of competence that

can be linked to instructional actions that facilitate changes to

preferable states. Distinctions need not be made among all

possible states, but only among classes of states with different

instructional implications. The new tests to inform instructional

decisions need merely(!) present tasks that learners in the

different states are likely to carry out in observably different

ways. Not only correctly as opposed to incorrectly, but at what

speed, with what intermediate products, or with which incorrect

response; not simply as independent pieces of information from

distinct items, but in patternS of similarity, dissimilarity, or

independence across tasks that probe knowledge structures and

problem-solving strategies. The new test theory need merely(!)

provide models whose parameters are capable of expressing the

salient patterns, and inferential procedures upon which to base

instructional decisions in the presence of uncertainty.

Foundations of the new pedagogy are to be found in the union

of analyses of key concepts in a substantive area, research into

the cognitive psychology of the area, and detailed obsP,rvations of

learners as they progress. Greeno (1976) argues that the tools

and the perspectives of cognitive and educational psychology have

developed to a point at which they can be used to generate

instructional objectives in this manner. He provides detailed

illustrations in three substantive domains at increasing levels of

complexity and sophistication:
fourth-grade fractions, high school

geometry, and college level auditory psychophysics.

Foundations of the new theory of test construction are

similarly to be found in educational and cognitive psychology

(Embretson, 1985a; Messick, 1984). Standard vocabulary items

suffice to ascertain the breadth of a learner's familiarity with

concepts in a substantive area, but tasks based on analogies probe

the interconnections among concepts. Speed of response is more

informative than correctness about the automaticity of procedures,

1 14



hence a better guide to assigning additional practice on a

currently conscious process. Designing appropriate measures

demands familiarity with the substantive field, not just about the

knowledge structures of the expert but about the incomplete or

inaccurate structures novices often use. To see how the requisite

cognitive and substantive analyses might be carried out, and how

tasks that differentiate among learners at different states of

competence might then be constructed, the reader is refe-.:red to

Curtis and Glaser (1983) on reading achievement and Marshall

(1985) on "story problems" in arithmetic.

Foundations of the new test theory are to be found in the

general principles that led to the development of item response

theory. The examinee will be characterized by parameters that

express tendencies to act in accordance with the various

continuous levels or discrete states in simplified models of

cognition. Tasks will be characterized by parameters indicate the

extent to which they tap different aspects of knowledge

structures, procedures, or strategies. As in IRT, individual

differences among examinees that are not salient to the decision

will be modeled as random--not as a psychologically tenable

position, but as a practically useful expedient.

Beyond "Low-to-High Proficiency"

The breadth of problems to which standard test theotetic

models have been usefully employed, despite their limited low-to-

high conception of proficiency, suggests a certain robustness of

modeling. It is not necessary that models account for all

possible ways students might approach a test, but it is necessary

that they can capture instructionally relevant patterns. A test

must be designed to highlight the pertinent patterns, and analyzed

with a model capable of expressing them.

The idea of building test items around cognitive principles

can be traced back at least as far as to Guttman's facet design

tests (Guttman, 1970). Guttman worked out analytic methods for

analyzing data from such tests within the framework of classical

1520
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test theory. Scheiblechner (1972) and Fischer (1973), with their

"linear logistic test model" expressed item difficulty parameters

in the Rasch IRT model as functions of psychologically salient

features of test items, but still characterized examinees in terms

of overall proficiency. More recently, test theory models built

around patterns other than overall proficiency have begun to

appear in the psychometric literature.

"Tectonic Plate" models. Increasing competence in a

substantive area need not be reflected as uniformly increasing

chances of success on all tasks. Patterns of smooth increase may

be observed for certain people on certain sets of tasks, in

certain phases of development; standard test theory will give good

summaries of change in these neighborhoods. Discontinuous

patterns of change begin to appear as the scope of tasks becomes

broader, as the range of development becomes greater, and as the

range of experiences of examinees becomes more diverse. "Tectonic

plate" models generalize IRT by allowing for a limited number of

predetermined, theory-driven, discontinuities in item response

patterns. In tectonic plate geological models, points within a

given land mass, or plate, maintain their relative positions, but

the plates move with respect to one another. In tectonic plate

psychometric models, items tapping the same set of skills maintain

their difficulties relative to one another, but the difficulties

of the zroups of items change with respect to other groups as

learners acquire new skills or concepts.

Wilson's (1985, 1989) "Saltus" model extends the Rasch IRT

model to development with discontinuous jumps. An example is

Siegler's (1981) rule-learning analysis of balance-beam tasks,

where students can increase their competence either by using the

rules they know more effectively (continuous change) or by

learning new rules (discontinuous change). Sometimes students who

learn a new rule begin to miss a type of problem they used to get

right, because their previous, less complete, set of rules gave

the right answers for the wrong reasons. This pattern flouts

standard test theory. The Saltus model assumes that each examinee

16
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is in one of a number of unobservable stages of development.

Items are classified so that all items in a class have the same

relationship to developmental stages. One set of item parameters

expresses relative difficulties among items within item classes,

which, like Rasch item difficulty parameters, are the same for

people in all stages. A second set of parameters quantifies

patterns that the Rasch model cannot express: differences in

relative difficulties between item classes for people in different

stages, such as the difficulty reversals mentioned above. Saltus

is effectively a mixture of standard Rasch models.

Mislevy and Verhelst (in press) have discussed mixture models

more generally, listing assumptions, laying out general models,

and suggesting estimation procedures. They emphasize situations .

in which different subjects follow different strategies, pointing

out that instructional decisions can depend on how students solve

problems, not just how many they solve. The salient features of

items are those that can differentiate among users of different

strategies, mental models, or conceptions about key relationships.

An examinee is characterized by the probabilities that she

employed the various alternative strategies, and a conditional

estimate of proficiency under each. Measurement with such a model

can indicate change that is either quantitative (e.g., the

examinee employed Strategy A on both occasions, but more

effectively at the second) or qualitative (e.g., she used Strategy

A before instruction but Strategy B afterwards).

Latent class models. Although models with continuous latent

variables have dominated educational measurement, Lazarsfeld

(1950) introduced models with categorical latent variables nearly

half a century ago. Most educational applications of latent class

models have been in "mastery" testing; one attempts to infer an

examinee's unobservable state--master or nonmaster--on the basis

of observable responses (Macready and Dayton, 1977, 1980). In the

more recent "binary skills" models (Haertel, 1984), examinees are

classified in terms of which of a set of skills they possess.

This "true" classification is unobservable. Items are classified

17
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according to which of the skills they require for solution. This

classification is known. Ideally, an examinee responds correctly

to only and exactly those items that require skills he or she

possesses. The stochastic parameters of the model reflect

departures from this ideal.

Except in the special case of mastery testing, computational

constraints have limited applications of latent class models to no

more than about ten items until recently. Information about skill

profiles in groups can be gleaned from such data, but individuals'

skills could not be inferred accurately. Improved computational

procedures have opened the door to applications with 50 or 60

items (e.g., Paulson, 1986; Yamamoto, 1987), and work with

structurally similar models in expert systems holds promise of

handling much larger problems (Lauritzen and Spiegelhalter, 1988).

Progress in this direction is vital to educational applications,

since these inferences demand more data than low-to-high

proficiency inferences. Moreover, adaptive testing, which made

IRT measurement more efficient, will be able to make latent class

measurement practicable (Dayton and Macready, 1989; Falmagne and

Doignon, 1988).

Covonential models. The models described above were

introduced with right/wrong test items, which, if constructed

carefully, yield response patterns that differentiate examinees

who tackle them in different ways. Richer information can be

accumulated if it is possible to track intermediate products of

solution. Consider, for example, a situation in which the binary

skills model applies. Inferences about skill profiles can be

stronger if one can be see which subtasks were attempted and their

outcomcs: overall correctness can result from one sequence of

correct operations or another, or a fortuitous mixture of correct

and incorrect operations; overall incorrectness can be caused by a

poor plan of attack, or a flawed execution of a good plan. Early

implementations of these ideas have been worked out by Embretson

(1983, 1985b) and Samejima (1983).



All of the models discussed above--tectonic plate, latent

class, and componential models--exhibit the same cardinal feature:

they support inferences about proficiencies other than just low-

to-high ability because, and only because, the user specifies

theoretically salient patterns of response other than just less-

to-more correct answers. Current implementations require

expertise in statistics as well as in the substantive area. Test

theory researchers must embed these approaches in generally

applicable computer routines, or shells, so that a broader range

of users can put them into practice in the substantive areas.
3

Beyond Right/Wrong, Multiple-Choice Items

Currently IRT is used almost exclusively to draw inferences

about a low-to-high proficiency variable from responses to

multiple-choice test items. The preceding section discussed how,

even with multiple-choice data, one can found inferences upon

radically different conceptions of proficiency. Inferences can be

made yet stronger, and decision-making more efficient, if

different kinds of data can be collected.

We have mentioned the possibility of exploiting the identity

of incorrect responses to multiple-choice items, for when

particular misconceptions are probed in more than one item and we

wish to infer how an examinee is approaching tasks. IRT models

that distinguish among incorrect alternatives have been discussed

by Bock (1972), Masters (1982), Samejima (1979), and Thissen and

3 Similar diffusion processes have already occurred in two

area related to test theory. The first is IRT itself. In the

1960's, only a handful of mathematically talented researchers

could use IRT; now IRT is widely used by practitioners by virtue

of production programs such as LOGIST (Wingersky, Barton, and

Lord, 1982), BILOG (Mislevy and Bock, 1983), and BICAL (Wright,

Mead, and Bell, 1980). The second area is that of linear

structural relationships among variables with measurement error.

Proposing such a model and solving the equations was once

practically grounds for a Nobel prize in economics; now anyone

with access to the LISREL computer program (Joreskog and Sorbom,

1986) can routinely carry out analyses undreamed of a few decades

ago.
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Steinberg (1984). These papers show how to connect observations

more complex than right/wrong to the standard psychological model

of low-to-high proficiency. The same machinery for the

observational aspect of modeling can be used when the

psychological aspect is an alternative cognitive model. Embretsen

(1983, 1985b) and Masters (Masters and Mislevy, 1989) have taken

some initial steps in this direction.

Because data collected on computers can provide response time

routinely, response latency can also be exploited. Response

latencies are particularly pertinent to inferences about

automaticity; a correct answer arrived at through a laborious

conscious process can have different instructional implications

than the same response obtained throuvh automatized processe.

Response latencies can also be used in conjunction with

correctness to design items that differentiate among examinees who

use different strategies. Many quantitative items in the SAT, for

example, can be solved either by a "brute force" calculation or by

a simple calculation if a key relationship is recognized; "correct

and fast" suggests the insightful solution. Scheiblechner (1985)

and Thissen (1983) show how to use response times to measure low-

to-high proficiency. Their methods of linking observed responses

to expected responses could be applied with an alternative

cognitive model for expected responses.

Beyond Tester-Controlled Observational Settings

Traditional educational tests present small, closed-form

problems, isolated and packaged more neatly than the problems

people encounter in life. Real-world tasks require one to

recognize a problem space; to plan strategies, to take initial

steps, and gather additional information; and, observing

preliminary results, to determine which direction to proceed.

Controlling the observational setting in testing to some degree is

probably unavoidable in a decision-making zystem applied routinely

to many learners. Controlled simulation tasks strike a compromise

between the rigid, tester-controlled observational setting of

20



traditional tests and the wholely unstructured observation of

performance in natural settings.

The most work in this area has been carried out in the arena

of medical education in the form of "patient management problems,"

or PMPs (Assmann, Hixon, and Kacmarek, 1979). A simulated patient

(through a written or oral dialogue, or as a live actor or a

computer model) presents the examinee with initial symptoms; the

examinee requests tests, considers their results, prescribes

treatments, and monitors their effects, generally attempting to

identify and treat the initially unknown disease. Despite their

appeal as evocators of critical problem-solving skills, PMPs do

not seem to provide reliable data from the perspective of standard

test theoretic techniques (McGuire, 1985). For the same amount of

testing time, reliability coefficients of PMP scores prove

disappointingly low compared with multiple-choice tests.

A possible explanation of this result is that standard test

theory analyses of PMP data are not looking for the right

patterns. They look at simple additive combinations of single

outcomes, rather than relationships that might suggest

associations among facts in examinees' schema, or indicate the use

of effective or ineffective problem-solving strategies. A

distinct stream of medical research, however, does address these

relationships; "expert systems" that help health care workers with

diagnostic problems (e.g., Pope, 1981; Shortliffe et al., 1973).

An expert system representation of a health care area is

build around associations among unobservable diseaFc states,

observable symptoms and test results, and outcomes of tl-eatments.

Some expert systems express these associations through ''fuzzy

logic" (Zadeh, 1983) or "belief functions" (Shafer, 176), but the

ones that use conditional probabilities (Spiegelhalter, 1986) are

extensions of the latent class models discussed above. In an

educational setting, associations would be delineated among

substantive concepts, strategies, observable outcomes, and

prescribed instruction (Clancey, 1988).
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There are two levels at which expert systems could be

implemented in educational settings. The first appears more

amenable to end-of-course or macro-level decision-making, while

the second seems better suited to an ongoing instructional system.

In the first, simpler, approach, an expert system is built

only for a "correct" model. An examinee's responses are evaluated

in terms of their efficacy at each decision point as compared with

the best possible action given present information. If scores

were also available from a standard multiple-choice test of

knowledge, one could distinguish performance problems caused by

strategic errors from those caused by knowledge deficiencies.

In the second, more ambitious, approach, not only would a

correct expert system be built, but examinees' possibly "inexpert

systems" would be inferred. Perhaps the best known example of

this type is Anderson's (Anderson and Reiser, 1985) computer

programming tutor. Although more individualized instructional

prescriptions can be made in this way, inferring even selected

aspects of examinees' schema and strategies requires far more data

than does comparing performance to a fixed expert model. A

successful system of this type would probably require a more

constrained problem space and more extensive interactions of the

learner with the simulation.

Conclusion

Einstein's theory of relativity revolutionized physics, but

it extended rather than supplanted Newton's laws of motion.

Classical mechanics still works just fine, thank you, for building

bridges, planning billiards shots, and figuring out how to stand

up from a overstuffed easy chair. And as long as educators are

called upon to make the macro-level, linearly-ordered decisions

that engendered standard test theory, standard test theory will

continue to be useful, and will continue to be used. Recent

developments in technology, however, provide opportunities for

decision making at the micro-level more frequently and for larger

numbers of students than ever before; recent developments in
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education and psychology give us conceptions of competence and

learning that can be used to guide these decisions.

Researchers in education and psychology have begun to lay the

theoretical groundwork to link testing with the cognitive

processes of learning. Meanwhile, researchers in measurement and

statistics have made breakthroughs in inferential procedures for

the models of standard test theory. To inform modern educational

decisions requires drawing together the insights from these two

strands of research--the twin foundations of a new test theory.
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